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Abstract- Let G(V,E) be a simple graph of or-
der n with vertex set V and edge set E. Let (u, v)
denotes an unordered vertex pair of distinct vertices
of G. The i-common neighbor set of G is defined
as N(G, i) := {(u, v) : u, v ∈ V, u 6= v and |N(u) ∩
N(v)| = i}, for 0 ≤ i ≤ n − 2. The polynomial

N [G;x] =
∑(n−2)

i=0 |N(G, i)|xi is defined as the com-
mon neighbor polynomial of G [3]. In this paper we
study common neighbor polynomial of some graph
constructions.
Key Words: Common neighbor set, Common
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1 Introduction

Let G(V,E) be a simple graph of order n with vertex
set V and edge set E. Let (u, v) denotes an unordered
pair of distinct vertices of G. The i-common neigh-
bor set of G is defined as N(G, i) := {(u, v) : u, v ∈
V, u 6= v and |N(u) ∩ N(v)| = i}, for 0 ≤ i ≤ n − 2.

The polynomial N [G;x] =
∑(n−2)

i=0 |N(G, i)|xi is de-
fined as the common neighbor polynomial of G [3]. In
[3] the present authors derived the common neighbor
polynomial of some well known graphs. The common
neighbor polynomial of some graph operations were
discussed in [4].

Common neighbor polynomial may be useful in
the study of social networks, citation networks etc.
“While modelling the structure of a social network
system, usually pairs of individuals with shared in-

terests are represented by pairs of vertices with com-
mon neighbors. The number of such common neigh-
bors serves as a measure of consensus and proclivities
between the corresponding pair of individuals”[5].

In this paper we study common neighbor polyno-
mial of some graphs and graph constructions.

2 Main results

Let v0 be a specific vertex of a graph G. Let Gv0(m)
be a graph obtained from G by identifying the vertex
V0 of G with an end vertex of the path Pm+1 with
m + 1 vertices [6].
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Figure 1: The graph Gv0(m)

Theorem 1. Let G be a graph with n vertices and let
v0 ∈ V (G). If deg(v0) = d, we have N [Gv0(m);x] =
N [G;x] + (m + d− 1)x + mn− d +

(
m−1
2

)
.

Proof. Let y0, y1, . . . , ym be the vertices of the path
Pm+1. Let the vertex v0 of G be identified with the
end vertex y0 of Pm+1. Let (u, v) be any pair of
vertices of Gv0(m). We consider 3 cases:
Case(i) Let u, v ∈ V (G).
Then the number of vertex pairs (u, v) with i common
neighbors in Gv0(m) equals |N(G, i)|.
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Case(ii) Let u, v ∈ {y1, y2, . . . , ym}.
Then the number of vertex pairs (u, v) with i common
neighbors in Gv0(m) equals |N(Pm, i)|.
Case(iii) Let v ∈ {y1, y2, . . . , ym} and u ∈ V (G).
If u = y0, then (u, y2) has one common neighbor and
if u is a neighbor of y0, then (u, y1) has one common
neighbor. Thus d+ 1 pairs of vertices under this case
have 1 common neighbor. All other (mn − d − 1)
vertices under this case have no common neighbors.

It follows that

N [Gv0(m);x] = N [G;x] + N [Pm;x] + (d + 1)x

+(mn− d− 1)

= N [G;x] + (m− 2)x +

(
m− 1

2

)
+1 + (d + 1)x + (mn− d− 1)

= N [G;x] + (m + d− 1)x + mn− d +

(
m− 1

2

)
.

This completes the proof.

Let a and b be two specific vertices of a graph G.
Let G′a,b(m) or simply, G′(m) be a graph obtained
from G by identifying the vertices a and b of G with
the two end vertices of a path Pm [6].
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Figure 2: The graph G′(m)

Theorem 2. Let G be a graph with n vertices. Let
a, b be two specific vertices of G. Then for m > 2,
we have N [G′(m);x] = N [G;x] + (m + d − 2)x +(
m− 3

2

)
+ n(m − 2) − (d + 1) where d denotes the

sum of degrees of the vertices a and b in G.

Proof. Let y1, y2, . . . , ym be the vertices of a path Pm.
Let the vertices a, b of G be identified with the end
vertices y1 and ym of Pm respectively. Let (u, v) be
any pair of vertices of G′(m).

Here we consider the following 3 cases:
Case(i) Let u, v ∈ V (G).
Then the number of vertex pairs (u, v) with i com-
mon neighbors in G′(m) equals |N(G, i)|.
Case(ii) Let u, v ∈ {y2, y3, . . . , ym−1}.
Then the number of vertex pairs (u, v) with i com-
mon neighbors in G′(m) equals |N(Pm−2, i)|.
Case(iii)Let v ∈ {y2, y3, . . . , ym−1} and u ∈ V (G).
If u = y1, then (u, y3) has one common neighbor and
if u = ym, then (u, ym−2) has one common neighbor.
If uy1 ∈ E(G) then (u, y2) has one common neighbor
in G′(m) and if uym ∈ E(G) then (u, ym−1) has one
common neighbor in G′(m). Thus d + 2 pairs of ver-
tices (u, v) have 1 common neighbor in G′(m). All
other n(m− 2)− (d+ 2) vertex pairs under this case
have no common neighbors.
It follows that

N [G′(m);x] = N [G;x] + N [Pm−2;x]

+ (d + 2)x + n(m− 2)− (d + 2)

= N [G;x] + (m− 4)x +

(
m− 3

2

)
+ 1 + (d + 2)x + n(m− 2)− (d + 2)

= N [G;x] + (m + d− 2)x

+

(
m− 3

2

)
+ n(m− 2)− (d + 1).

This completes the proof.

Let G1 and G2 be two disjoint graphs. Let
(G1, G2)u,v(m) be a graph obtained by identifying
the vertices u of G1 and v of G2 with the end ver-
tices y1 and ym respectively, of a path Pm.

G1 G2
y1 y2 - - - ym

Figure 3: The graph (G1, G2)u,v(m)

Theorem 3. Let G1 and G2 be two disjoint graphs
with n1 and n2 vertices respectively. Let u ∈ V (G1)
is of degree d1 and v ∈ V (G2) is of degree d2.
Then N [(G1, G2)u,v(m);x] = N [G1;x] + N [G2;x] +
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N [Pm−2;x]+(d1 +d2 +2)x+(n1 +n2)(m−2)−(d1 +
d2) + n1n2 − 2 where m > 3.

Proof. Let y1, y2, . . . , ym be the vertices of the path
Pm. Let the vertex u of G1 be identified with the
end vertex y1 of Pm and let the vertex v of G2 be
identified with the vertex ym. Let (x, y) be any pair
of vertices of (G1, G2)u,v(m). We consider 6 cases:
Case(i) Let x, y ∈ V (G1).
Then the number of vertex pairs (x, y) with i common
neighbors in (G1, G2)u,v(m) equals |N(G1, i)|.
Case(ii) Let x, y ∈ V (G2).
Then the number of vertex pairs (x, y) with i common
neighbors in (G1, G2)u,v(m) equals |N(G2, i)|.
Case(iii) Let y ∈ {y2, y3, . . . , ym−1} and x ∈ V (G1)
.
In this case, if x = u, the vertex pair (x, y3) has
exactly one common neighbor y2 and if x is a neighbor
of u in G1, then there are d1 pairs of vertices of the
form (x, y2) which have exactly one common neighbor
y1. The remaining n1(m− 2)− (1 + d1) vertex pairs
have no common neighbors.
Case(iv) Let y ∈ {y2, y3, . . . , ym−1} and x ∈ V (G2)
.
As in Case(iii), the vertex pair (ym, ym−2) has exactly
one common neighbor ym−1 and d2 pairs of vertices
has exactly one common neighbor ym. The remaining
n2(m − 2) − (1 + d2) vertex pairs have no common
neighbors.
Case(v) Let x, y ∈ {y2, y3, . . . , ym−2}.
Then the number of pairs of vertices having i common
neighbors equals |N(Pm−2, i)|.
Case(vi) Let x ∈ V (G1) and y ∈ V (G2).
Since m > 3, all the n1n2 pairs of vertices (x, y) under
this case have no common neighbors.
Thus it follows that

N [(G1, G2)(m);x] = N [G1;x] + N [G2;x]

+N [Pm−2;x] + (1 + d1)x + n1(m− 2)

−(d1 + 1) + (1 + d2)x + n2(m− 2)

−(d2 + 1) + n1n2

= N [G1;x] + N [G2;x] + N [Pm−2;x]

+(d1 + d2 + 2)x + (n1 + n2)(m− 2)

−(d1 + d2) + n1n2 − 2.

A flower graph fn×m is a graph with a n-cycle and
n number of m-cycles each intersects with the n-cycle
on a unique single edge [1].

Figure 4: The flower graph f4×3

Theorem 4. If fn×m is a flower graph, then, the
following results hold:

1. If m 6= 4, N [fn×m;x] = N [Cn;x] +
n N [Pm−2;x]+5nx+(m−2)n2+

(
n
2

)
(m−2)2−5n.

2. If m = 4, N [fn×m;x] = N [Cn;x]+2nx2 +3nx+
4n2 − 6n.

Proof. Let Cn be the inner cycle and C1
m, C2

m, . . . , Cn
m

be the m-cycles having one of the edges common to
Cn. Let v1, v2, . . . , vn be the vertices of Cn and for
each j ∈ {1, 2, . . . , n}, let Uj = {uj

1, u
j
2, . . . , u

j
m−2}

be the set of m − 2 vertices which form the m-cycle
Cj

m together with the edge vjvj+1 of Cn. Let (u, v)
be any pair of vertices of fn,m. We consider 3 cases.
Case(i) Let u, v ∈ V (Cn).
Then the number of pairs (u, v) with i common neigh-
bors in fn,m equals |N(Cn, i)|.
Case(ii) Let u, v ∈ Uj where j ∈ {1, 2, . . . , n}.
Then for each j ∈ {1, 2, . . . , n} the number of
pairs (u, v) with i common neighbors in fn,m equals
|N(Pm−2, i)|.
Case(iii)Let u ∈ Uj and v ∈ Uk where j, k ∈
{1, 2, . . . , n} and j 6= k. Then the n pairs (uj−1

m−2, u
j
1)

has exactly one common neighbor vj where the index
j is taken modulo m. All other

(
n
2

)
(m− 2)2−n pairs

of vertices under this case have no common neigh-
bors.
Case(iv)Let u ∈ V (Cn) and v ∈ Uj where j ∈
{1, 2, . . . , n}.
Then the pairs of the form (uj

1, vj−1) and

(uj−1
m−2, vj+1) has exactly one common neighbor vj
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. Also the pairs (uj
1, vj+1) has exactly one common

neighbor vj if m 6= 4 and has two common neighbors

uj
m−2 and vj if m = 4. Similarly, the pairs (uj

m−2, vj)
has one common neighbor vj+1 if m 6= 4 and has two

common neighbors uj
1 and vj+1 if m = 4. All other

(m− 2)n2 − 4n pairs of vertices under this case have
no common neighbors.
It follows that

1. If m 6= 4, N [fn×m;x] = N [Cn;x] +
n N [Pm−2;x] + 4nx + (m − 2)n2 − 4n + nx +(
n
2

)
(m− 2)2 − n.

=N [Cn;x] + n N [Pm−2;x] + 5nx + (m− 2)n2 +(
n
2

)
(m− 2)2 − 5n.

2. If m = 4, N [fn×m;x] = N [Cn;x] + n N [P2;x] +
2nx2 + 2nx + 2n2 − 4n + nx + 4

(
n
2

)
− n.

=N [Cn;x] + 2nx2 + 3nx + 4n2 − 6n.

This completes the proof.

A chaplet graph[7] Cp � Ct
q where p, q, t ≥ 3 is

obtained by taking one point union of t-copies of the
cycle Cq and attaching the same to each vertex of the
cycle Cp.

Figure 5: The chaplet graph C4 � C3
4

Theorem 5. N [Cp�Ct
q;x] = N [Cp;x]+tpN [Cq;x]+

[4tp+3pt(t−1)]x+
(
p
2

)
t2(q−1)2 +p(q2−2q−5)

(
t
2

)
+

[(p− 1)(q − 1)− 4]tp.

Proof. Let u1, u2, . . . , up be the vertices of the cycle
Cp. For j ∈ {1, 2, . . . , t} and k ∈ {1, 2, . . . , p}, let

uk, u
j
k1, u

j
k2, . . . , u

j
k(q−1) be the vertices of jth copy of

the cycle Cq attached to the vertex uk of Cp. Let

(u, v) be any pair of vertices of Cp�Ct
q. We consider

the following cases:
Case(i) Let u, v ∈ {u1, u2, . . . , up}.
In this case, the number of vertex pairs (u, v) with i
common neighbors equals |N(Cp, i)|.
Case(ii) Let u, v ∈ {uk, u

j
k1, u

j
k2, . . . , u

j
k(q−1)} where

j ∈ {1, 2, . . . , t} and k ∈ {1, 2, . . . , p}.
Fixing the variables j and k, the number of ver-
tex pairs (u, v) with i common neighbors equals
|N(Cq, i)| and there are tp choices for fixing j and
k.
Case(iii) Let u ∈ {uj

k1, u
j
k2, . . . , u

j
k(q−1)} and

v ∈ {u1, u2, . . . , uk−1, uk+1, . . . , up} where j ∈
{1, 2, . . . , t} and k ∈ {1, 2, . . . , p}.
In this case, pairs of vertices of the form (uj

k1, uk+1),

(uj
k1, uk−1), (uj

k(q−1), uk+1) and (uj
k(q−1), uk−1) have

exactly one common neighbor uk and there are 4tp
pairs of vertices of this form. All other vertices un-
der this case have no common neighbors and there
are (p− 1)(q − 1)tp− 4tp such pairs.
Case(iv) Let u ∈ {uj

k1, u
j
k2, . . . , u

j
k(q−1)}, v ∈

{ul
k1, u

l
k2, . . . , u

l
k(q−1)} where j, l ∈ {1, 2, . . . , t}, k ∈

{1, 2, . . . , p} and j 6= l.
In this case, pairs of vertices of the form
(uj

k1, u
l
k1),(uj

k(q−1), u
l
k(q−1)) and (uj

k1, u
l
k(q−1)) have

exactly one common neighbor uk and there are
2p
(
t
2

)
+ pt(t − 1) = 4p

(
t
2

)
pairs of vertices of this

form. All the remaining vertices under this case have
no common neighbors and the number of such ver-
tices are given by

(
t
2

)
p(q − 1)2 − 4p

(
t
2

)
which equals

p(q2 − 2q − 3)
(
t
2

)
.

Case(v) Let u ∈ {uj
k1, u

j
k2, . . . , u

j
k(q−1)}, v ∈

{ul
s1, u

l
s2, . . . , u

l
s(q−1)} where j, l ∈ {1, 2, . . . , t} and

k, s ∈ {1, 2, . . . , p} and k 6= s.
In this case the pairs of vertices (u, v) have no com-
mon neighbors and there are

(
p
2

)
t2(q−1)2 such vertex

pairs. Hence it follows that
N [Cp � Ct

q;x] = N [Cp;x] + tpN [Cq;x] + 4tp x

+ [(p− 1)(q − 1)− 4]tp + 4p
(
t
2

)
x

+ p(q2 − 2q − 3)
(
t
2

)
+
(
p
2

)
t2(q − 1)2

= N [Cp;x] + tpN [Cq;x] + [4tp + 2pt(t− 1)]x
+
(
p
2

)
t2(q − 1)2 + p(q2 − 2q − 3)

(
t
2

)
+ [(p−1)(q−1)−4]tp. This completes the proof.
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A snake graph Sn,m is obtained from a path graph
Pn replacing each edge of Pn by the cycle graph Cm

[2]. Sn,3 is known as the triangular snake graph and
Sn,4 the rectangular snake graph.

w1
1 w3

1 = w1
2 w3

2 = w1
3 w3

3

w2
1

w2
2 w2

3

Figure 6: The snake graph S3,3

Theorem 6. For a snake graph Sn,m, N [Sn,m;x] =
nN [Cm;x] + 4(n− 1)x+ [(m− 1)2− 4](n− 1) + (m−
1)2
(
n−1
2

)
.

Proof. Let the vertices of the ith cycle of Sn,m be rep-
resented by w1

i , w
2
i , . . . , w

m
i respectively. Let (u, v) be

any pair of vertices of Sn,m. We will consider 3 cases:
Case(i) Let u, v ∈ {w1

i , w
2
i , . . . , w

m
i }; i ∈

{1, 2, . . . , n}.
Then for each i, the number of vertex pairs (u, v)
with k common neighbors equals |N(Cm, k)|.
Case(ii) Let u ∈ {w1

i , w
2
i , . . . , w

m−1
i } and v ∈

{w2
i+1, w

3
i+1, . . . , w

m
i+1}; i ∈ {1, 2, . . . , n− 1}.

Then the pairs (w1
i , w

2
i+1), (w1

i , w
m
i+1), (wm−1

i , w2
i+1),

(wm−1
i , wm

i+1) have exactly one common neighbor wm
i

and there are 4(n − 1) such pairs. The remaining
[(m − 1)2 − 4](n − 1) pairs under this case have no
common neighbors.
Case(iii) Let u ∈ {w1

i , w
2
i , . . . , w

m−1
i } and v ∈

{w2
j , w

3
j , . . . , w

m
j }; i ∈ {1, 2, . . . , n − 2} and j ∈

{i + 2, i + 3, . . . , n}.
The vertex pairs under this case have no common
neighbors and there are (m− 1)2

∑n−2
i=1 (n− i− 1) =

(m− 1)2
(
n−1
2

)
such pairs.

It follows that
N [Sn,m;x] = nN [Cm;x] + 4(n − 1)x + [(m − 1)2 −
4](n− 1) + (m− 1)2

(
n−1
2

)
.

Corollary 7. For a triangular snake graph Sn,3, we
have the following: N [Sn,3;x] = nN [C3;x] + 4(n −
1)x + 4

(
n−1
2

)
.
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