The Common Neighbor Polynomial of Some Graph Constructions

Shikhi M.¹ and Anil Kumar V.²

¹Department of Mathematics, TM Govt. College, Malappuram, Kerala, India 676 502 ²Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635, email:shikhianil@gmail.com¹, anil@uoc.ac.in¹

Abstract- Let G(V, E) be a simple graph of order n with vertex set V and edge set E. Let (u, v)denotes an unordered vertex pair of distinct vertices of G. The *i*-common neighbor set of G is defined as $N(G, i) := \{(u, v) : u, v \in V, u \neq v \text{ and } |N(u) \cap$ $N(v)| = i\}$, for $0 \leq i \leq n-2$. The polynomial $N[G; x] = \sum_{i=0}^{(n-2)} |N(G, i)| x^i$ is defined as the common neighbor polynomial of G [3]. In this paper we study common neighbor polynomial of some graph constructions.

Key Words: Common neighbor set, Common neighbor polynomial

1 Introduction

Let G(V, E) be a simple graph of order n with vertex set V and edge set E. Let (u, v) denotes an unordered pair of distinct vertices of G. The *i*-common neighbor set of G is defined as $N(G, i) := \{(u, v) : u, v \in$ $V, u \neq v$ and $|N(u) \cap N(v)| = i\}$, for $0 \leq i \leq n-2$. The polynomial $N[G; x] = \sum_{i=0}^{(n-2)} |N(G, i)| x^i$ is defined as the common neighbor polynomial of G [3]. In [3] the present authors derived the common neighbor polynomial of some well known graphs. The common neighbor polynomial of some graph operations were discussed in [4].

Common neighbor polynomial may be useful in the study of social networks, citation networks etc. "While modelling the structure of a social network system, usually pairs of individuals with shared interests are represented by pairs of vertices with common neighbors. The number of such common neighbors serves as a measure of consensus and proclivities between the corresponding pair of individuals" [5].

In this paper we study common neighbor polynomial of some graphs and graph constructions.

2 Main results

Let v_0 be a specific vertex of a graph G. Let $G_{v_0}(m)$ be a graph obtained from G by identifying the vertex V_0 of G with an end vertex of the path P_{m+1} with m+1 vertices [6].

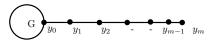


Figure 1: The graph $G_{v_0}(m)$

Theorem 1. Let G be a graph with n vertices and let $v_0 \in V(G)$. If $deg(v_0) = d$, we have $N[G_{v_0}(m); x] = N[G; x] + (m+d-1)x + mn - d + {m-1 \choose 2}$.

Proof. Let y_0, y_1, \ldots, y_m be the vertices of the path P_{m+1} . Let the vertex v_0 of G be identified with the end vertex y_0 of P_{m+1} . Let (u, v) be any pair of vertices of $G_{v_0}(m)$. We consider 3 cases: **Case(i)** Let $u, v \in V(G)$.

Then the number of vertex pairs (u, v) with *i* common neighbors in $G_{v_0}(m)$ equals |N(G, i)|.

Case(ii) Let $u, v \in \{y_1, y_2, \ldots, y_m\}$. Then the number of vertex pairs (u, v) with *i* common neighbors in $G_{v_0}(m)$ equals $|N(P_m, i)|$. **Case(iii)** Let $v \in \{y_1, y_2, \ldots, y_m\}$ and $u \in V(G)$. If $u = y_0$, then (u, y_2) has one common neighbor and if *u* is a neighbor of y_0 , then (u, y_1) has one common neighbor. Thus d+1 pairs of vertices under this case have 1 common neighbor. All other (mn - d - 1)vertices under this case have no common neighbors.

It follows that

$$N[G_{v_0}(m); x] = N[G; x] + N[P_m; x] + (d+1)x + (mn - d - 1)$$
$$= N[G; x] + (m - 2)x + \binom{m - 1}{2} + 1 + (d+1)x + (mn - d - 1)$$
$$= N[G; x] + (m + d - 1)x + mn - d + \binom{m - 1}{2}.$$

This completes the proof.

Let a and b be two specific vertices of a graph G. Let $G'_{a,b}(m)$ or simply, G'(m) be a graph obtained from G by identifying the vertices a and b of G with the two end vertices of a path P_m [6].

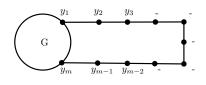


Figure 2: The graph G'(m)

Theorem 2. Let G be a graph with n vertices. Let a, b be two specific vertices of G. Then for m > 2, we have $N[G'(m); x] = N[G; x] + (m + d - 2)x + \binom{m-3}{2} + n(m-2) - (d+1)$ where d denotes the sum of degrees of the vertices a and b in G.

Proof. Let y_1, y_2, \ldots, y_m be the vertices of a path P_m . Let the vertices a, b of G be identified with the end vertices y_1 and y_m of P_m respectively. Let (u, v) be any pair of vertices of G'(m). Here we consider the following 3 cases: **Case(i)** Let $u, v \in V(G)$.

Then the number of vertex pairs (u, v) with i common neighbors in G'(m) equals |N(G, i)|. **Case(ii)** Let $u, v \in \{y_2, y_3, \ldots, y_{m-1}\}$. Then the number of vertex pairs (u, v) with i common neighbors in G'(m) equals $|N(P_{m-2}, i)|$. **Case(iii)**Let $v \in \{y_2, y_3, \ldots, y_{m-1}\}$ and $u \in V(G)$. If $u = y_1$, then (u, y_3) has one common neighbor and if $u = y_m$, then (u, y_{m-2}) has one common neighbor. If $uy_1 \in E(G)$ then (u, y_2) has one common neighbor. If $uy_1 \in E(G)$ then (u, y_2) has one common neighbor in G'(m) and if $uy_m \in E(G)$ then (u, y_{m-1}) has one common neighbor in G'(m). Thus d + 2 pairs of vertices (u, v) have 1 common neighbor in G'(m). All other n(m-2) - (d+2) vertex pairs under this case have no common neighbors.

It follows that

$$N[G'(m); x] = N[G; x] + N[P_{m-2}; x] + (d+2)x + n(m-2) - (d+2) = N[G; x] + (m-4)x + {m-3 \choose 2} + 1 + (d+2)x + n(m-2) - (d+2) = N[G; x] + (m+d-2)x + {m-3 \choose 2} + n(m-2) - (d+1).$$

This completes the proof.

Let G_1 and G_2 be two disjoint graphs. Let $(G_1, G_2)_{u,v}(m)$ be a graph obtained by identifying the vertices u of G_1 and v of G_2 with the end vertices y_1 and y_m respectively, of a path P_m .

Figure 3: The graph $(G_1, G_2)_{u,v}(m)$

Theorem 3. Let G_1 and G_2 be two disjoint graphs with n_1 and n_2 vertices respectively. Let $u \in V(G_1)$ is of degree d_1 and $v \in V(G_2)$ is of degree d_2 . Then $N[(G_1, G_2)_{u,v}(m); x] = N[G_1; x] + N[G_2; x] +$

$$\begin{split} N[P_{m-2};x] + (d_1 + d_2 + 2)x + (n_1 + n_2)(m-2) - (d_1 + d_2) + n_1n_2 - 2 \ where \ m > 3. \end{split}$$

Proof. Let y_1, y_2, \ldots, y_m be the vertices of the path P_m . Let the vertex u of G_1 be identified with the end vertex y_1 of P_m and let the vertex v of G_2 be identified with the vertex y_m . Let (x, y) be any pair of vertices of $(G_1, G_2)_{u,v}(m)$. We consider 6 cases: **Case(i)** Let $x, y \in V(G_1)$.

Then the number of vertex pairs (x, y) with *i* common neighbors in $(G_1, G_2)_{u,v}(m)$ equals $|N(G_1, i)|$. **Case(ii)** Let $x, y \in V(G_2)$.

Then the number of vertex pairs (x, y) with *i* common neighbors in $(G_1, G_2)_{u,v}(m)$ equals $|N(G_2, i)|$.

Case(iii) Let $y \in \{y_2, y_3, \dots, y_{m-1}\}$ and $x \in V(G_1)$

In this case, if x = u, the vertex pair (x, y_3) has exactly one common neighbor y_2 and if x is a neighbor of u in G_1 , then there are d_1 pairs of vertices of the form (x, y_2) which have exactly one common neighbor y_1 . The remaining $n_1(m-2) - (1+d_1)$ vertex pairs have no common neighbors.

Case(iv) Let $y \in \{y_2, y_3, \dots, y_{m-1}\}$ and $x \in V(G_2)$

As in Case(iii), the vertex pair (y_m, y_{m-2}) has exactly one common neighbor y_{m-1} and d_2 pairs of vertices has exactly one common neighbor y_m . The remaining $n_2(m-2) - (1+d_2)$ vertex pairs have no common neighbors.

Case(v) Let $x, y \in \{y_2, y_3, \dots, y_{m-2}\}$.

Then the number of pairs of vertices having i common neighbors equals $|N(P_{m-2}, i)|$.

Case(vi) Let $x \in V(G_1)$ and $y \in V(G_2)$.

Since m > 3, all the n_1n_2 pairs of vertices (x, y) under this case have no common neighbors. Thus it follows that

$$\begin{split} N[(G_1,G_2)(m);x] &= N[G_1;x] + N[G_2;x] \\ &+ N[P_{m-2};x] + (1+d_1)x + n_1(m-2) \\ &- (d_1+1) + (1+d_2)x + n_2(m-2) \\ &- (d_2+1) + n_1n_2 \\ &= N[G_1;x] + N[G_2;x] + N[P_{m-2};x] \\ &+ (d_1+d_2+2)x + (n_1+n_2)(m-2) \\ &- (d_1+d_2) + n_1n_2 - 2. \end{split}$$

A flower graph $f_{n \times m}$ is a graph with a *n*-cycle and *n* number of *m*-cycles each intersects with the *n*-cycle on a unique single edge [1].

Figure 4: The flower graph $f_{4\times 3}$

Theorem 4. If $f_{n \times m}$ is a flower graph, then, the following results hold:

- 1. If $m \neq 4$, $N[f_{n \times m}; x] = N[C_n; x] + n N[P_{m-2}; x] + 5nx + (m-2)n^2 + {n \choose 2}(m-2)^2 5n.$
- 2. If m = 4, $N[f_{n \times m}; x] = N[C_n; x] + 2nx^2 + 3nx + 4n^2 6n$.

Proof. Let C_n be the inner cycle and $C_m^1, C_m^2, \ldots, C_m^n$ be the *m*-cycles having one of the edges common to C_n . Let v_1, v_2, \ldots, v_n be the vertices of C_n and for each $j \in \{1, 2, \ldots, n\}$, let $U_j = \{u_1^j, u_2^j, \ldots, u_{m-2}^j\}$ be the set of m-2 vertices which form the *m*-cycle C_m^j together with the edge $v_j v_{j+1}$ of C_n . Let (u, v)be any pair of vertices of $f_{n,m}$. We consider 3 cases. **Case(i)** Let $u, v \in V(C_n)$.

Then the number of pairs (u, v) with *i* common neighbors in $f_{n,m}$ equals $|N(C_n, i)|$.

Case(ii) Let $u, v \in U_j$ where $j \in \{1, 2, \ldots, n\}$.

Then for each $j \in \{1, 2, ..., n\}$ the number of pairs (u, v) with *i* common neighbors in $f_{n,m}$ equals $|N(P_{m-2}, i)|$.

Case(iii)Let $u \in U_j$ and $v \in U_k$ where $j, k \in \{1, 2, ..., n\}$ and $j \neq k$. Then the *n* pairs (u_{m-2}^{j-1}, u_1^j) has exactly one common neighbor v_j where the index j is taken modulo m. All other $\binom{n}{2}(m-2)^2 - n$ pairs of vertices under this case have no common neighbors.

Case(iv)Let $u \in V(C_n)$ and $v \in U_j$ where $j \in \{1, 2, ..., n\}$.

Then the pairs of the form (u_1^j, v_{j-1}) and $\square (u_{m-2}^{j-1}, v_{j+1})$ has exactly one common neighbor v_j . Also the pairs (u_1^j, v_{j+1}) has exactly one common neighbor v_j if $m \neq 4$ and has two common neighbors u_{m-2}^j and v_j if m = 4. Similarly, the pairs (u_{m-2}^j, v_j) has one common neighbor v_{j+1} if $m \neq 4$ and has two common neighbors u_1^j and v_{j+1} if m = 4. All other $(m-2)n^2 - 4n$ pairs of vertices under this case have no common neighbors.

It follows that

- 1. If $m \neq 4$, $N[f_{n \times m}; x] = N[C_n; x] + n N[P_{m-2}; x] + 4nx + (m-2)n^2 4n + nx + {n \choose 2}(m-2)^2 n. = N[C_n; x] + n N[P_{m-2}; x] + 5nx + (m-2)n^2 + {n \choose 2}(m-2)^2 5n.$
- 2. If m = 4, $N[f_{n \times m}; x] = N[C_n; x] + n N[P_2; x] + 2nx^2 + 2nx + 2n^2 4n + nx + 4\binom{n}{2} n.$ = $N[C_n; x] + 2nx^2 + 3nx + 4n^2 - 6n.$

This completes the proof.

A chaplet graph[7] $C_p \odot C_q^t$ where $p, q, t \ge 3$ is obtained by taking one point union of *t*-copies of the cycle C_q and attaching the same to each vertex of the cycle C_p .

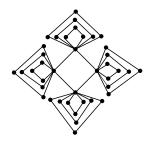


Figure 5: The chaplet graph $C_4 \odot C_4^3$

Theorem 5. $N[C_p \odot C_q^t; x] = N[C_p; x] + tpN[C_q; x] + [4tp + 3pt(t-1)]x + {p \choose 2}t^2(q-1)^2 + p(q^2 - 2q - 5){t \choose 2} + [(p-1)(q-1) - 4]tp.$

Proof. Let u_1, u_2, \ldots, u_p be the vertices of the cycle C_p . For $j \in \{1, 2, \ldots, t\}$ and $k \in \{1, 2, \ldots, p\}$, let $u_k, u_{k1}^j, u_{k2}^j, \ldots, u_{k(q-1)}^j$ be the vertices of j^{th} copy of the cycle C_q attached to the vertex u_k of C_p . Let

(u, v) be any pair of vertices of $C_p \odot C_q^t$. We consider the following cases:

Case(i) Let $u, v \in \{u_1, u_2, ..., u_p\}$.

In this case, the number of vertex pairs (u, v) with *i* common neighbors equals $|N(C_p, i)|$.

Case(ii) Let $u, v \in \{u_k, u_{k1}^j, u_{k2}^j, \dots, u_{k(q-1)}^j\}$ where $j \in \{1, 2, \dots, t\}$ and $k \in \{1, 2, \dots, p\}$.

Fixing the variables j and k, the number of vertex pairs (u, v) with i common neighbors equals $|N(C_q, i)|$ and there are tp choices for fixing j and k.

Case(iii) Let $u \in \{u_{k1}^{j}, u_{k2}^{j}, \dots, u_{k(q-1)}^{j}\}$ and $v \in \{u_1, u_2, \dots, u_{k-1}, u_{k+1}, \dots, u_p\}$ where $j \in \{1, 2, \dots, t\}$ and $k \in \{1, 2, \dots, p\}$.

In this case, pairs of vertices of the form (u_{k1}^j, u_{k+1}) , (u_{k1}^j, u_{k-1}) , $(u_{k(q-1)}^j, u_{k+1})$ and $(u_{k(q-1)}^j, u_{k-1})$ have exactly one common neighbor u_k and there are 4tp pairs of vertices of this form. All other vertices under this case have no common neighbors and there are (p-1)(q-1)tp - 4tp such pairs.

Case(iv) Let $u \in \{u_{k1}^{j}, u_{k2}^{j}, \dots, u_{k(q-1)}^{j}\}, v \in \{u_{k1}^{l}, u_{k2}^{l}, \dots, u_{k(q-1)}^{l}\}$ where $j, l \in \{1, 2, \dots, t\}, k \in \{1, 2, \dots, p\}$ and $j \neq l$.

In this case, pairs of vertices of the form $(u_{k1}^j, u_{k1}^l), (u_{k(q-1)}^j, u_{k(q-1)}^l)$ and $(u_{k1}^j, u_{k(q-1)}^l)$ have exactly one common neighbor u_k and there are $2p\binom{t}{2} + pt(t-1) = 4p\binom{t}{2}$ pairs of vertices of this form. All the remaining vertices under this case have no common neighbors and the number of such vertices are given by $\binom{t}{2}p(q-1)^2 - 4p\binom{t}{2}$ which equals $p(q^2 - 2q - 3)\binom{t}{2}$.

Case(v) Let $u \in \{u_{k1}^{j}, u_{k2}^{j}, \dots, u_{k(q-1)}^{j}\}, v \in \{u_{s1}^{l}, u_{s2}^{l}, \dots, u_{s(q-1)}^{l}\}$ where $j, l \in \{1, 2, \dots, t\}$ and $k, s \in \{1, 2, \dots, p\}$ and $k \neq s$.

In this case the pairs of vertices (u, v) have no common neighbors and there are $\binom{p}{2}t^2(q-1)^2$ such vertex pairs. Hence it follows that

$$\begin{split} &N[C_p \odot C_q^t; x] = N[C_p; x] + tpN[C_q; x] + 4tp \ x \\ &+ [(p-1)(q-1) - 4]tp + 4p\binom{t}{2}x \\ &+ p(q^2 - 2q - 3)\binom{t}{2} + \binom{p}{2}t^2(q-1)^2 \\ &= N[C_p; x] + tpN[C_q; x] + [4tp + 2pt(t-1)]x \\ &+ \binom{p}{2}t^2(q-1)^2 + p(q^2 - 2q - 3)\binom{t}{2} \\ &+ [(p-1)(q-1) - 4]tp. \ \text{This completes the proof.} \quad \Box \end{split}$$

A snake graph $S_{n,m}$ is obtained from a path graph P_n replacing each edge of P_n by the cycle graph C_m [2]. $S_{n,3}$ is known as the triangular snake graph and $S_{n,4}$ the rectangular snake graph.

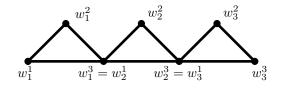


Figure 6: The snake graph $S_{3,3}$

Theorem 6. For a snake graph $S_{n,m}$, $N[S_{n,m}; x] = nN[C_m; x] + 4(n-1)x + [(m-1)^2 - 4](n-1) + (m-1)^2 \binom{n-1}{2}$.

Proof. Let the vertices of the i^{th} cycle of $S_{n,m}$ be represented by $w_i^1, w_i^2, \ldots, w_i^m$ respectively. Let (u, v) be any pair of vertices of $S_{n,m}$. We will consider 3 cases: **Case(i)** Let $u, v \in \{w_i^1, w_i^2, \ldots, w_i^m\}; i \in \{1, 2, \ldots, n\}.$

Then for each *i*, the number of vertex pairs (u, v) with *k* common neighbors equals $|N(C_m, k)|$.

Case(ii) Let $u \in \{w_i^1, w_i^2, \dots, w_i^{m-1}\}$ and $v \in \{w_{i+1}^2, w_{i+1}^3, \dots, w_{i+1}^m\}; i \in \{1, 2, \dots, n-1\}.$

Then the pairs (w_i^1, w_{i+1}^2) , (w_i^1, w_{i+1}^m) , (w_i^{m-1}, w_{i+1}^2) , (w_i^{m-1}, w_{i+1}^m) have exactly one common neighbor w_i^m and there are 4(n-1) such pairs. The remaining $[(m-1)^2 - 4](n-1)$ pairs under this case have no common neighbors.

Case(iii) Let $u \in \{w_i^1, w_i^2, \dots, w_i^{m-1}\}$ and $v \in \{w_j^2, w_j^3, \dots, w_j^m\}$; $i \in \{1, 2, \dots, n-2\}$ and $j \in \{i+2, i+3, \dots, n\}$.

The vertex pairs under this case have no common neighbors and there are $(m-1)^2 \sum_{i=1}^{n-2} (n-i-1) = (m-1)^2 \binom{n-1}{2}$ such pairs. It follows that

 $N[S_{n,m};x] = nN[C_m;x] + 4(n-1)x + [(m-1)^2 - 4](n-1) + (m-1)^2 {n-1 \choose 2}.$

Corollary 7. For a triangular snake graph $S_{n,3}$, we have the following: $N[S_{n,3}; x] = nN[C_3; x] + 4(n - 1)x + 4\binom{n-1}{2}$.

References

- Ennice Mphako-Banda, "Some polynomials on flower graphs", International Mathematical Forum 2, 51(2007)2511-2518.
- [2] I.I.Jadav and G.V. Ghodasara, "Snakes related strongly graphs", International Journal of Advanced Engineering Research and Science, Volume 3, Issue 9,2016, pages 240-245.
- [3] M. Shikhi and V. Anilkumar, "Common neighbor polynomial of graphs", Far East Journal of mathematical sciences, Volume 102, Number 6, 2017, Pages 1201-1221.
- [4] M. Shikhi and V. Anilkumar, "Common neighbor polynomial of graph operations", Far East Journal of mathematical sciences, Volume 102, Issue 11, 2017, Pages 2629 - 2641.
- [5] Shikhi M. and Anilkumar V., "CNP-equivalent Classes of Graphs", South East Asian Journal of Mathematics and Mathematical Sciences, Vol.13, No.2, 2017, pages 75-84.
- [6] S. Alikhani, "Dominating sets and domination polynomials of graphs", Ph.D. Thesis, 2009.
- [7] Shee S.C. and Ho Y.S., "The cordiality of on point union of *n*-copies of a graph", Discrete Mathematics, 117(1993), Pages 225-243.